技術資訊報導

台灣履帶起重機之發展與現況

林冠宏* 嚴文志*

一、前言

起重機(crane),指用吊鉤或其他取物裝 置吊掛重物,在空間進行升降與運移等循環 性作業的機械。起重機有很多分類,「吊 車」、「塔吊」、「天車」、「行車」等俗稱 指的就是起重機中的一類或幾類。

起重機發明後一直是各種建設不可或缺 的機具設備之一,在大地工程中履帶起重機 更是重要的機具設備,從基樁、連續壁的基 礎工程到主體工程都需要履帶起重機,本文 分為一、前言敘明起重機及以台灣連續壁工 程所使用履帶起重機為主要研究,第二部分 續明起重機的歷史從公元前6世紀末的古希臘 及中國古代都有起重機的運用原理,第三部 份敘明起重機機械原理與分類,依起重機用 途分類,第四部份敘明台灣連續壁工程使用 之起重機演進以台灣連續壁工程使用的履帶 起重機經ICOS、ML、MHL等工法敘明了履 帶起重機的演進,第五部份敘明台灣基礎工 程全套管工法使用之履帶式起重機演進,最 後提出結語。

二、起重機歷史

履帶起重機在台灣基礎工程中是不可或 缺的,作為連續壁及基樁工程必備設備之 一,但履帶起重機並非憑空誕生,而是經過 演進的,作為生產生活中起升重物的需要, 古代各個文明中均發展了具有自己特色的起 重機械雛形,如中國古代的桔槔、轆轤等, 但現代起重機械起源於歐洲,例公元前6世紀 古希臘人發明了吊重物的起重機,筆者依維 基百科對起重機之發展歷程整理如下:

* 同豐營造工程股份有限公司

2.1 古希臘


公元前6世紀末,古希臘人發明了用於起 吊重物的起重機。考古表明最晚到公元前515 年,吊裝夾具和吊楔的痕跡就已經出現在了希 臘神廟的石塊上。在這些石塊上,有用於起升 的孔,這些孔通常位於重心上方,或者對重心 上方的一個點對稱。考古學家認為這些跡象表 明當時已經有了起重機的存在。

不久後,絞車和滑輪組就取代土堆坡道 (ramp)成為垂直搬運最主要的方式。滑輪組 系統的最早文字記錄出自《力學問題》(Mech. 18, 853a32-853b13), 書中將其歸功於亞里 士多德(公元前384-322年),但其出現可能要 稍晚一些。與此同時,希臘神廟的石塊尺寸 又逐漸達到了古風時期的水平,這表明複雜 的滑輪組系統開始在希臘的建築工地越來越 普及。

2.2 古羅馬

起重機在古代的全盛時期是羅馬帝國時 期,當時施工建設猛增,建築尺寸也相當巨 大。羅馬人採用了希臘的起重機並將其進一 步發展。多虧維特魯威和希羅等工程師的詳 細記錄,我們可以對羅馬人的起重技術了解 的比較多。公元一世紀末的昆圖斯·哈特里 烏斯的墓石上有兩幅留存下來的浮雕詳細地 描繪了當時的踏車起重機。

最簡單的羅馬起重機是「trispastos」(三 滑輪起重機,如圖一),這種起重機由一個單 梁吊臂、一個絞車、一根繩和一個包含3個滑 輪的滑輪組。該結構的機械利益為3:1,單人 操作絞車就起升150公斤左右的重物。 「pentaspastos」(五滑輪起重機)是起重量再 大些的起重機,在其最能吊的工況,它共有5 個滑輪,同時根據起升重量的不同,滑輪可

圖一 三滑輪起重機(引自維基百科~trispastos)

以調節為3個,臂杆可以調節為2-4根。 「polyspastos」藉助絞車兩邊的四個人可以 起升約3000公斤的重物。因為踏車具有更大 的機械優勢,所以如果將絞車換成踏車,僅 需要一半的工作人員,其最大起重量可以加 倍達到6000公斤。這意味著,相比埃及金字 塔的建設中利用土堆坡道搬運一塊2.5噸的石 塊利用50人,利用羅馬polyspastos,每人可 以起升3000公斤,是他們的60倍。

古羅馬工程師們依靠兩種措施吊裝大型 物體:一是希羅所建議的提升塔(lifting tower),提升塔是由平行的四根桅杆組成的 方塔架;二是塔周圍地面的大量絞車,雖然 絞車比踏輪的機械利益要小,但它卻可以實 現多人甚至牲口同時施力。通過協作起吊如 此巨大的重量,需要為絞車提供動力的各個 工作組之間大量的精準協作。

2.3 中世紀

對踏輪起重機(magna rota)最早的記載 發現於約1225年的法國檔案文獻,緊隨其後 的是1240年的一份同樣出自法國的記載。在 航海行業方面,烏得勒支最早使用岸上起重 機是1244年,安特衛普是1263年,布呂赫是 1288年,漢堡是1291年,而在英格蘭到1331 年才有踏車起重機的記載。

通常,用起重機來完成垂直搬運要被常 規的方式更安全、更廉價。因此,在港口、 礦山和尤其是建築等領域,踏輪起重機應用 廣泛,其在高聳的哥德式教堂的建造中發揮 了重要作用。在中世紀新舊方式一直在港口 和建築工地共存,如圖二所示。

中世紀的踏輪起重機包括一個或兩個繞 著中軸轉動的巨大踏輪,踏輪寬度足夠兩個 人並排行走,如圖三所示。雖然早期的「圓規 臂」輪("compass-arm" wheel)是直接插入軸 杆之中的,但更先進的「扣臂」型("clasp-arm" type)則已改為了連接輪輞的弦杆,這為使 用更細的軸杆和提供更大的機械利益提供 了可能。

相對於現代起重機,中世紀的起重機和 更接近它們在古希臘羅馬時期的前輩,主要 用以垂直吊裝,而非水平搬移。因此當時吊 裝作業的方式與現在是不同的,例如,在建 築工地, 吊車將石塊從下方直接吊裝就位, 或者從牆的中間為兩端吊運石頭。另外,起 重機司機在起重機外面向踏輪工人下達命令 的同時,還可以用一根細繩控制著吊物的水 平移動。

踏輪起重機 (引自維基百科~起重機)

2.4 工業革命時期

隨著工業革命的到來,被用來在碼頭裝 卸貨物的第一台現代起重機正式產生。1838 年,工業家、商人威廉.阿姆斯特朗男爵設 計了一台液壓式水力起重機。在他的設計 中,用一個在密閉圓柱缸中的柱塞來產生承 載能力,而通過閥門調節缸中液體量來賦予 柱塞所需的力,如圖四所示。

圖四 1413年德國特里爾內港的塔吊 (引自維基 百科~起重機)

液壓起重機的成功讓阿姆斯特朗於1847 年在紐卡斯爾成立了阿姆斯特朗-惠特沃斯公 司來為起重機和橋樑生產他的液壓機械。阿 姆斯特朗不斷提升他的起重機設計;其中最 顯著的創新就是液壓蓄壓器的應用。原先在 水壓不足以供應液壓起重機使用的時候,阿 姆斯特朗常常會建一座高水塔來提供足夠壓 力。液壓蓄壓器,一個裝有承重柱塞的鑄鐵 缸。柱塞緩緩上升,拉伸缸內的水,直到重 物的重力迫使缸下的水在巨大的壓力下進入 管線。該發明允許在相同壓力下使用更大量 的水來驅動,所以明顯地提升了起重機的負 載能力。

2.5 工業革命時期後至今

經工業革命時期阿姆斯特朗所發明的液 壓起重機增強起重機能量, 並隨著對起重機 的重用與應用範圍發明了橋式起重機、門式 起重機、半門式起重機、纜索起重機、門式 纜索起重機、門座起重機、半門座起重機、 桅杆起重機、移動式起重機、塔式起重機、 鐵路起重機、懸臂起重機、浮式起重機、甲 板起重機、臂架起重機等廣泛的應用在各範 圍,其中移動式履帶起重機更是大地工程中 不可或缺的起重機。

三、起重機機械原理與分類

起重機設計的三個基本要素是:1. 要能 負重; 2. 不能翻倒; 3. 不能斷裂。筆者依 維基百科說明起重機機械原理(詳圖五)及分 類整理如下:

1. 負載能力

起重機利用一個或多個簡單機械來獲取 機械優勢的,分別介紹如下:

- (1) 槓桿:一台平衡的起重機包含了一個 圍繞「支點」旋轉的橫樑。通過槓桿的原理, 可以在較長的一端用相對小的力,來平衡較 短的一端的相對大的負載。負載與所施加力 的比率就是槓桿較長臂與較短臂的長度比, 這就是機械優勢。
- (2) 滑輪:一台臂架型起重機會有一個傾 斜的支撐(「吊臂」)來支撐一個定滑輪組,由 繩索在這個定滑輪組和一套連接重物的動滑 輪組之間纏繞。當繩索的自由端被手或卷揚 機拉動的時候,滑輪系統會給重物提供一個 等於施加力乘以滑輪組之間繩股數的大小的 力。這也是機械優勢。
- (3) 液壓缸:可直接用於提升負荷,或間 接移動承載了另一個提升裝置的起重臂或 梁。像所有的機器一樣,起重機也遵循能量 守恆定律。這意味著輸出給負載的能量不會 超過輸入機器的能量。例如,如果一個滑輪 系統能夠提供10倍的施加力,則負載動作的 距離就會只有施加力的十分之一。因為能量 正比於力和距離的積,輸出能量被保持大致 等於輸入能量。

起重機原理-滑輪及液壓缸的組合 (引自維 圖五 基百科~起重機)

2. 穩定性

對於穩定性,起重系統各個部分的力矩 和必須接近於零,才能確保吊車不翻。實踐 中,負載被允許的最大值(額定載荷)一定會 比導致傾翻的負載要小,從而提供了安全餘 量。

根據美國的現代起重機標準,履帶式起 重機的額定載荷是傾翻載荷的75%,帶支腿 的移動式起重機的是85%。起重機設計的這 些要求和安全相關的一些其他方面由美國機 械工程師學會在標準ASME B30.5-2014 「mobile and locomotive cranes」(流動式和 移動式起重機)中做出規定。

安裝在船舶或海上平台上的起重機的標 準由於由於船體運動產生的動態負載而更加 嚴格一些。此外,船隻或平台的穩定性也必 須加以考慮。

對於固定底座或主梁式起重機,吊杆、 臂和負載產生的力矩由底座或主梁抵消。基 座內的應力必須小於該材料或起重機被破壞 的屈服應力。

3. 分類

按結構可分為橋架型起重機、纜索型起 重機和臂架型起重機三大類,按取物裝置可 分為吊鉤起重機、抓鬥起重機、電磁起重機 等十五類,按照移動方式可分為固定式起重 機、爬升式起重機、便移式起重機、徑向迴

轉起重機、行走式起重機五大類,按照驅動 方式可分為手動起重機、電動起重機、液壓 起重機三類。還有按照迴轉能力、支承方 式、操作方式等來分類的。共有橋式起重機、 門式起重機、半門式起重機、纜索起重機、門 式纜索起重機 、門座起重機、半門座起重 機、桅杆起重機、移動式起重機、塔式起重 機、鐵路起重機、懸臂起重機、浮式起重機、 甲板起重機、臂架起重機等15項起重機。

4. 履帶式起重機

履帶式起重機(crawler crane,簡稱履帶 吊),一種利用履帶行走的移動式起重機,具有 較強的吊裝能力,起重量大,防滑性能好,對 路面要求低,可以吊重行走。適合大型工廠如 石化、電力、冶金、化工、核能建設作業,在 廠區內工作,更是台灣基礎工程必備的機具。

例如利勃海爾(德語:Liebherr)集團公 司靠塔式起重機起家,已成為世界領先的建 築機械製造商之一。利勃海爾所生產的「LR」 系列桁架臂履帶吊最大起重量已達到3000噸 (LR 13000),「LTR」系列伸縮臂履帶吊最大 起重量也已達到了1200噸(LTR 11200)。

履帶式起重機吊臂形式依不同模式區有主 桿(crane boom)、副桿(fixed jib)、延伸桿 (luffing jib)等形式如圖六(民昌企業有限公 司,2016);其中延伸桿(luffing jib)形式依長 度需再增加捲揚機的數量及鋼索長度來配合。

圖六 履帶式起重機吊臂形式 (引自日本KOBELCO CKE-2500型錄)

四、台灣連續壁工程使用之起 重機

有關台灣地下連續壁施工法除建築物地 下室採用外,諸如土木工程、交通工程、立 體地下車道、地下鐵及海岸工程之護岸、防 坡堤等,皆因連續壁工法發揮上述特性,而 使其應用日廣。

4.1 地下連續壁不同施工法簡介

連續壁工法於國內採用期間,由於不同 工法之施工品質控制不一,致有時欠缺經 驗,如接頭處理不當造成漏水、混凝土灌注 不當影響強度、壁體剛性不足、撓度增加, 影響鄰近地盤下陷,造成鄰房傾斜龜裂損 害,壁體施作垂直度不足,開挖後影響地下 結構物之施工,預留筋位置不正確,增加工 程費用,壁體鋼筋保護層不足,增加鋼筋銹 蝕等缺失,亦值得再深入研究解決方法。

依林(2001)研究指出台灣常用連續壁工法 有以下數種:1.ICOS工法、2.BW工法、3.SHB 工法、4. ELSE工法、5. KCC工法、6. OWS工 法、7. ELSK-KELLY工法、8. KB工法、9. K-W 工法、10. 深井或連續壁開挖工法。

第1、2及3三個工法為國人最常使用, 大體上來說,ICOS工法因其機具較簡,施工 費用較低的原因,不會在台灣國內市場上被 淘汰的,但其施工精度不高,故僅被限用於 開挖深度較淺的工程上運用。

BW工法具有相當之開挖精度,其開挖深 可達地下30~50m左右,但其施工機具繁多 且價昂,施工進度緩慢,相對提高了工程單 價,想必會逐漸地在國內市場消失。

第9種K-W工法是相當短暫的一種工法, 因為其P.C版長受限制,且其版與版間之漏 水現象無法克服,因此無法普遍被國內市場 接受,若其能在P.C版長及接縫處有進一步 改善方法,則其預鑄觀念之快捷優點將使此 工法佔優勢。

第8種工法KELLY BAR工法是由ICOS 工法機具所做更進一步發展而來的,其運用 KELLY BAR將抓戽貫入土層中,再以油壓 力量關閉抓戽取土的觀念,在諸方法中是屬 相當新的,其改革了ICOS工法之缺點,利用 自重抓土有限取土方式,再運用KELLY BAR將抓戽貫入土中的特點,其發展前途應 相當可觀,但其精度稍嫌不足,若其精度方 面可以改良,相信具相當發展潛力。

第3種工法為最新引進的地下連續壁施工 法,其特點在其抓戽為長7m之油壓控制挖掘 機,X、Y方向共有12片校正版,故其精度可 達到1/500~1/2000,精度相當高,且在深開 挖工程中,其長壁式抓戽可減少壁體崩坍的 可能性,其挖掘原理是改良ICOS工法取土方 式,除利用本身高達7m的開挖機自重外,在 抓戽部份,再利用油壓控制開閉,使挖土效 果更達充實,且其機動性良好,為一具有相 當潛力的方法,其施工速度快捷,但抓戽每 抓一刀,導溝旁需要專人重新校對位置,此 為BW挖掘式工法的缺點。

連續壁工法已發展到具有鑽入岩層中約2 公尺以增加抵抗上揚力的能力。另一方面, 依國內發展趨勢已推動營造施工自動化,挖 掘機器會逐漸走向僅需操作員一人即可施工 的新境界,校正每刀開挖位置的人員,將被 操作室內的螢光幕取替,直接由操作員自行 對點校正,而無需旁人指導了。

從上述分析,最佳連續壁施工法首推 SHB 工法, SHB (San-Ching hydraulic bucket)係利用MHL(Masago hydraulic long bucket)油壓長壁挖掘機掘挖連續壁的一種工 法,MHL之裝置是要配合目前興起的超高層 建築物或大型基礎工程而設計,主要在利用 此種挖掘裝置達到較高精度及效率,而其挖 掘的深度也較其他工法深,可達地下55公 尺,設備機器如圖七所示。

MHL工法設備機器

SHB工法適用於地下鐵路、地下室、公 共地下水道、污水處理場、防護壁或擋土牆、 防坡堤之護岸工程、鐵塔基礎工程、橋墩工 程、地下貯油槽及地下抽水站等各項工程。

SHB工法所使用MHL油壓長壁挖掘機之 特徵,因有一種含傾斜計及修正裝置的精密 組合掘挖機,其施工作業不需作導孔,採用 油壓式,其挖掘能力甚強,操作容易,挖掘 深度可達55公尺,頗適用於深開挖工程。

4.2 台灣連續壁工法使用起重機之演變

隨著連續壁工法不同,隨之搭配的起重 機也有所演變,分別介紹如下:

4.2.1 ML工法使用之履帶式起重機

由義大利Impresa Construzioni Opere Specializzate公司所開發,為機械式蛤形抓 斗,稱為ICOS工法。經日本真砂工業株式會 社改良該機械式蛤形抓斗並以履帶起重機懸 調該抓斗,稱為ML工法,如圖八所示,利用 履帶起重機之鋼索操作抓斗進行挖掘動作。

4.2.2 MHL工法使用之履帶式起重機

MHL是日本真砂工業株式會社改良,抓 斗機身前後左右之上下部設置油壓驅動之修 正傾度較正導板,抓斗啟閉的方式為油壓式 稱為SHB工法,如圖九所示,於履帶起重機 後方放置油壓動力箱,利用外接發電機驅動 油壓動力箱操作抓斗進行挖掘動作。

4.2.3 國內業者使用改良式MHL工法履帶起重機

有國內業者依據實務經驗,將改良式 MHL工法所需使用引擎式油壓動力源置入於 履帶起重機內部裝置,也就是利用履帶起重 機原有的引擎油壓動力源改變原本油壓配管 並增加控制閥,讓國內業者使用MHL工法履 帶起重機不須要在履帶起重機後方放置任何 的動力源,如圖十至十二所示,除了外型不 再放置油壓動力箱改變外,也是履帶起重機 演進的一大改變。

台灣連續壁工程施工用的履帶式起重機 由於同步系統的因素常用Hitachi品牌,除了 上述的Hitachi SCX-900HD-2型外(永日建

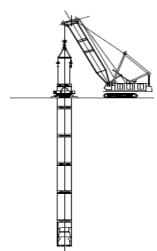
ML工法履帶起重機形式

圖九 MHL工法履帶起重機形式-後方放置油壓動 力箱

設機械股份有限公司,2016),還有Hitachi SCX-800、SCX-900、SCX-800HD等配合連 續壁工程設計口徑需求選擇吊車及吊臂長度 來配合施工。

五、台灣全套管工程使用之起 重機

套管鑽掘工法係以套管鑽掘機帶動足夠勁 度之鑽掘套管(底部有切削齒)切削土層,並搭 配錘式抓斗或取土桶等工具進行套管內取土, 鑽掘套管亦可成為防止壁體坍塌之保護措施, 無需再另行使用穩定液,並可克服堅硬之岩 盤、礫石層或易坍塌等較特殊地層。若基樁全 部深度均使用套管鑽掘並作為孔壁保護稱為全 套管工法如圖十三,部分深度使用套管鑽掘或 孔壁保護則稱為半套管工法。


圖十 履帶起重機SCX-900HD-2 增加控制閥位置

圖十一 履帶起重機SCX-900HD-2 增加控制閥 及油管

圖十二 履帶起重機SCX-900HD-2 駕駛室中加 裝MHL控制箱

圖十三 全套管工法示意圖

台灣全套管使用履帶起重機大都以日本廠 牌Kobelco、Hatachi、Sumitomo及後續合併 的Hitachi-Sumitomo等廠牌機具。履帶起重 機也從早期的機械式起重機進而演進為油壓式 起重機,再進而演變電控油壓式起重機。

如圖十三全套管工法中抓斗使用了履帶 起重機的單線拉力,另外搖管機可利用聯結 座與履帶起重機結合,以Kobelco BMS1000 為例,單線拉力為13~26(ton)(民昌企業有限 公司,2016)可以讓全套管工法中抓斗使用如 圖十四規格表,並且BMS1000又有獨立工法 使用的合流切換裝置,可說專為連續壁及基 椿工法而設計多功能履帶起重機,以上皆為 台灣的履帶起重機配合全套管工法施工的演 進。

六、結語

起重機發明後一直是各種建設不可或缺 的機具設備之一,在大地工程中移動式履帶 起重機更是重要的機具設備,從基樁、連續 壁的基礎工程到主體工程都需要移動式履帶 起重機,本文僅以台灣基礎工程之基椿及連 續壁所使用履帶起重機為主要研究,並以敘 明台灣基礎工程使用的履帶起重機經ICOS、 ML、MHL及全套管等工法,使台灣的履帶 起重機,從機械式使用後演進為外型的改 變,並藉由國內業者等使用者實務經驗,進 而讓履帶起重機內部的動力源的改變,相信 這是履帶起重機一大演進。

參考文獻

- 民昌企業有限公司 (2016), http://www.mangchong. com.tw/(2016年11月3日)。
- 永日建設機械股份有限公司 (2016),http://www.hitachi-c-m. com/tw/(2016年11月3日)。
- 林傳鐙 (2001),「地下連續壁施工法—應用於深開挖工程 簡介」,台灣省土木技師公會,第218期第四版。
- 維基百科(2010),「trispastos」, https://zh.wikipedia.org/ wiki/File:Trispastos_scheme.svg (2016年11月4日)。
- 維基百科(2010),「起重機」, https://zh.wikipedia.org/ wiki/%E8%B5%B7%E9%87%8D%E6%9C%BA(20 16年11月4日)。

LIFTING CAPACITIES

										Counterweight: 37.1 t Carbody Weight: 14.6 t Unit: metric ton		
Boom length (m) radius (m)	13.8	16.9	19.9	23.0	26.0	29.1	32.1	35.2	38.2	41.2	Boom length (m) Working radius (m)	
3.8	100.0										3.8	
4.3	4.3m/90.0	4.3m/87.5	4.8m/78.0								4.3	
5.0	74.0	74.0	73.5	5.4m/70.0	5.9m/61.5						5.0	
6.0	61.5	61.5	61.5	61.5	61.0	6.4m/56.8					6.0	
7.0	51.3	51.1	51.0	50.9	50.8	50.8	50.0	7.5m/45.0			7.0	
8.0	42.4	42.2	42.1	42.0	41.9	41.8	41.8	41.7	41.3	8.5m/37.5	8.0	
9.0	36.0	35.9	35.7	35.6	35.5	35.5	35.4	35.3	35.2	35.1	9.0	
10.0	31.3	31.1	31.0	30.9	30.8	30.7	30.6	30.5	30.4	30.3	10.0	
12.0	22.0	24.5	24.3	24.2	24.1	24.0	24.0	23.8	23.7	23.6	12.0	
14.0	13.2m/18.7	20.1	19.9	19.8	19.7	19.6	19.5	19.4	19.2	19.2	14.0	
16.0		15.8m/14.9	16.8	16.7	16.5	16.5	16.4	16.2	16.1	16.0	16.0	
18.0			13.6	14.3	14.2	14.1	14.0	13.8	13.7	13.7	18.0	
20.0			18.5m/12.5	12.5	12.4	12.3	12.2	12.0	11.9	11.8	20.0	
22.0				21.1m/11.1	10.9	10.8	10.7	10.5	10.4	10.3	22.0	
24.0					23.8m/9.8	9.6	9.5	9.3	9.2	9.1	24.0	
26.0						8.7	8.5	8.3	8.2	8.1	26.0	
28.0						26.4m/8.2	7.7	7.5	7.4	7.3	28.0	
30.0							29.0m/7.3	6.8	6.7	6.6	30.0	
32.0								31.7m/6.3	6.1	6.0	32.0	
34.0									5.5	5.4	34.0	
36.0									34.3m/5.5	4.9	36.0	
38.0										37.0m/4.7	38.0	
Reeves	8	7	7	6	5	5	4	4	4	3	Reeves	

Boom length Working (m) radius (m)	44.3	47.3	50.4	53.4	56.5	59.5	62.6	Boom length (m) Working radius (m)
9.0	9.1m/34.6	9.6m/31.8						9.0
10.0	30.2	30.1	10.1m/25.0	10.7m/25.0	11.2m/21.6	11.7m/20.1		10.0
12.0	23.5	23.4	23.3	23.2	19.5	19.4	12.2m/18.0	12.0
14.0	19.0	18.9	18.9	18.7	18.6	18.0	15.4	14.0
16.0	15.9	15.7	15.7	15.5	15.4	15.0	14.5	16.0
18.0	13.5	13.4	13.3	13.2	13.0	12.9	12.7	18.0
20.0	11.6	11.5	11.5	11.3	11.2	11.0	10.9	20.0
22.0	10.2	10.0	10.0	9.8	9.7	9.6	9.4	22.0
24.0	9.0	8.8	8.8	8.6	8.5	8.4	8.2	24.0
26.0	8.0	7.8	7.8	7.6	7.5	7.3	7.2	26.0
28.0	7.1	7.0	6.9	6.8	6.6	6.5	6.3	28.0
30.0	6.4	6.3	6.2	6.0	5.9	5.8	5.6	30.0
32.0	5.8	5.6	5.6	5.4	5.3	5.1	5.0	32.0
34.0	5.2	5.1	5.0	4.8	4.7	4.6	4.4	34.0
36.0	4.8	4.6	4.5	4.4	4.2	4.1	3.9	36.0
38.0	4.3	4.2	4.1	3.9	3.8	3.7	3.5	38.0
40.0	39.6m/4.0	3.8	3.7	3.6	3.4	3.3	3.0	40.0
42.0		3.5	3.4	3.2	3.0	2.9	2.6	42.0
44.0		42.2m/3.5	3.1	2.9	2.7	2.5		44.0
46.0			44.9m/3.0	2.5				46.0
Reeves	3	3	2	2	2	2	2	Reeves

Note:
Ratings according to Japanese Construction Codes for Mobile Cranes and Japanese Safety Ordinance on Cranes, etc.
Ratings shown in ______ are determined by the strength of the boom or other structural components.
Refer to notes P8.
Lifting capacities may vary depending on hook used or with/without auxiliary sheave.
Please refer rated chart in operator's cabin.

圖十四 全套管工法中抓斗使用規格表 (引自日本KOBELCO BMS-1000型錄)