技術短文

透地雷達探測廠區地下物之泰國經驗

一般工業廠房之增建或擴建工程,通常座落 於運作中之廠區內且可能年代久遠,既有地下管 線與構造物實際位置可能已不可考,而業主通常 也無法提供相關之竣工圖或當時之設計圖,即使 取得設計圖,可能也未包含後來增加之地下設 施。若增建工程之平面配置圖(Plot Plan)過於理 想化,則無法預知不明地下物對日後施工之衝 擊,而必須等到建造工程進行中才能發現,地下 物可能無法在短期內移除,甚至因廠區仍在運轉 而無法遷移。此時所有的相關設計與施工,可能 因而大幅變更,嚴重衝擊工程進度與建造成本。 因此,計畫廠區地下物之事先探測與確認對於工 程能否順利進行,是一項非常關鍵的前置作業。

常用來探測地下物之方法有地電阻探測、金 屬探測器、電纜探測儀與透地雷達等。而以透地 雷達具有快速資料蒐集、即時資料顯示、非破壞 性、地下連續剖面及可探測金屬及非金屬目標物 等特點,而廣為工程界所應用。但台灣對透地雷 達之應用,仍以特定條件下之學術研究為主。本 文介紹透地雷達技術,實際運用於泰國石化廠房 地下物之大規模探測,並配合現地開挖比對,歸 納出幾種雷達影像類型與其實體對照,並分析其 準確率,以供參考。

一、透地雷達原理與應用

1.1 原理與應用概況

透地雷達簡稱GPR(Ground Penetrating Radar),最早出現於1970年代中期,直至1980 年代中期,在國際透地雷達會議成立後,才有標 準化之制定,而成為專指利用電磁波(雷達波)探 測地下物之方法(Conyers and Goodman., 1997)。台灣則於1991年由地球理界引進,工程 界亦陸續加以應用。

*中鼎工程股份有限公司土建設計部

簡正樑 陳福成 曾子榮*

其基本原理係利用頻率範圍在1 MHz~2 GHz,且歷時僅為幾十億分之一秒的高頻脈雷達 波束,經過地層或結構體之傳遞,遇到不同介質 或層面處產生反射現象,反射之雷達波,經由相 位累加器、波形儲存器、數模轉換器、濾波器等 處理後,再經由高靈敏度雷達波天線罩接收、放 大、數位化後,儲存之時間差與電磁波訊號,配 合介質之電磁波速度得以計算目標物之深度(林 鎮華,2003)。其探測原理示意如圖一所示。

透地雷達常被應用於探測淺處地層或路面 下之管線、水管偵漏、地質描繪、鋪面結構、岩 性研究、地下空洞、地下掩埋物調查乃至古蹟考 查、古生物遺跡探測等。

1.2 廠區既有地下物調查

一般工廠(場)內之工程設施,依專業領域不同,常見之地下掩蔽物有廢棄之土木基礎、暗 溝、人孔、各種管線及電纜管道(排)等,詳細如 表一所示。透地雷達調查時,依據工程需要,設 定探測路線與深度,選擇適當頻率之天線,沿著 預先放樣並略微整平之探測路線,以正常行走速 度施測。透地雷達使用之天線(antenna)頻率越 高,探測深度卻越淺,但解析度越高;反之,天 線頻率越低,探測深度則越深,但解析度相對越 低。因此,選用透地雷達天線時,必須擬定探測 目標物之深度範圍。以本案為例,探測深度為地 表下3m,採用500 MHz之天線,可得到適當之 解析度。若欲探測深層之地層構造或地下水位, 則選用35 MHz之天線即可。透地雷達現場施測 之主要儀器設備詳如圖二所示。

表一 廠區內可能之地下掩蔽物(陣福成 2005)

10	
分類	內 容
土建	基礎,基樁,箱涵,暗溝,人孔,地下室結構,地盤改良
	物 (如灌漿、砂樁、礫石樁等),廢棄擋土設施等等。
管線	地下管線(雨水管、污水管、冷卻水管、油管、氣管等),消
	防管,長途管線進廠段。
電機	電纜管道(排), 接地棒、接地網,陰極防蝕系統等等。
設備	若無特殊設計,一般設備均設置於地表上。
儀控	儀控跟著設備設置,亦無地下物。可能設置於人孔內。

圖二 透地雷達探測之主要儀器設備

二、現場條件與限制

2.1 基地調查計畫

本案例基地在於泰國某處石化廠區內。地表下15m內為標準貫入試驗(SPT)錘擊數(N)為0 之極軟弱黏土,含水量介於40%~80%之間,其 下方為平均N值大於30之堅實至非常堅實黏 土,地下水位接近於地表面,約在地下0.6 m。

由於淺層地盤非常軟弱,因此廠區內所有主 要設備均需打樁,以符合設計承載力與沉陷量之 要求。本探測之目的,即利用透地雷達掃瞄未來 打樁位置並配合人工開挖,確認基礎位置是否有 地下障礙物,以便事先遷移或變更設計。探測區 域分為主廠區及管架區兩部份,主廠區面積約 170m X 170m,為廠區某一製程單元廢棄後, 僅將地上物移除,所遺留之地下構造物與管線則 未做任何處理,GPR之測線以5.5m間隔,縱橫 交錯,呈格網狀。管架區則呈帶狀,總長度約為 1500m,係在既有地上管線群之中,掃瞄預定 管道支撐鋼架之基礎位置,作業空間狹窄。GPR 測線則沿著既有管線群佈設,呈兩條平行直線。

2.2 影響探測準確率之限制

測線限制與開挖位置:由於本案GPR探測 之時程較基礎設計為早,使得主廠區以5.5m為 間隔之格網狀測線未必全能精準跨過所有設計 基礎位置中心,而導致開挖位置雖然有測線從邊 緣走過,卻可能因GPR感測寬度僅20cm,而造 成探測成像與開挖結果不一致。

人為假警報:當探測作業因現地條件變化 而出現不明顯影像時,專業與工程判斷多採取保 守之態度,寧願先判斷有地下物再開挖確認,而 不願先判定無地下物,造成"假警報"之比例較 高,尤其在地下電纜線眾多之管架區。

三、雷達影像分類與比對

3.1 雷達影像與實體

透地雷達施測時,將天線沿著測線拖曳,同 時每一瞬間記憶之描線被排列一起,即成雷達影 像,影像上方的橫軸為天線行進之里程,縱軸則 是探測深度。由於雷達波具有連續且快速發射之 特性,因此可即時將結果顯示於主單元之螢幕 上,以便現場判釋影像資料是否有效。

影像輸出包含資料處理與圖像判釋兩部 分。資料處理可利用濾波相關技術,提供清晰之 圖像,而圖像之判釋,則必須仰賴分析者之豐富 經驗與足夠之比對資料庫,才能做出合理且準確 之判釋。因此,在開挖確認之前,圖像之判釋, 確實存在有一定程度之主觀性,宜依工程類別, 累積更多比照資料,以減少主觀判釋誤差。以本 案例所得到之雷達影像與實體開挖比對,大致可 分成五類,詳如表二所示。表中顯示,最容易辨 識之雷達影像為A類-無地下物與D類-單獨金屬 管或地下電纜,B類與C類材質均為混凝土構 材,惟斷面形狀不同,E類為連鎖磚阻隔之電纜 線群,呈現較複雜之雷射影像,需要多次比對與 累積經驗才能提供準確之判釋。

3.2 重疊之地下物探測

現場若有上下兩層之地下物同時存在測線 上,則雷達影像取決於兩層地下物反射係數γ之 相對大小(李桂潀,1996),如圖三所示。其中反 射係數 γ (Reflection Coefficient)以下式表示:

式中, *E*₁與 *E*₂分別代表上層與下層物質之 相對介電常數,而相對介電常數則代表物質能讓 雷達波通過之能力。以現場為例,有一直徑12" 之金屬管位於既有混凝土管墩下方,如圖四(a) 所示,由於上層為反射係數較小之混凝土構材, 下層為反射係數較大之金屬管,因此仍然可偵測 出下方金屬管,並反應在雷達影像上。

反之,若上層地下物之反射係數較大,如金 屬管、電纜、鋼筋等材質,則當雷達波通過這些 材質後,訊號大幅衰減,無法到達下層地下物產 生反射訊號,而無法成像,如圖四(b)所示。雷 達波到達上層1"管徑之鐵管反射成像後,訊號 衰減,即使下層同為反射係數大之12"金屬 管,亦無法在雷達影像上留下明顯訊號。

3.3 探測與開挖比對分析

如前所述,本案例探測區域分為主廠區及管架區,依規劃測線掃瞄取得雷達影像後,再配合人工試坑開挖加以比對,主廠區與管架區之試坑數量分別為125處與214處,合計339處。比對結果分為四種情況:一為僅探測發現,開挖未發現,即所謂"假警報",可能與保守判釋有關;二為僅開挖發現,探測未發現,可能與測線不符或現場操作條件限制有關;三為兩者皆發現;四為兩者皆未發現。圖五與圖六分別表示主廠區與管架區之比對結果。顯示主廠區之情況一與情況三與情況四共佔63.2%。管架區之情況一與情況二則分別各佔38.3%與3.3%,而情況三與情況四則共佔58.4%。

顯示管架區之假警報比主廠區者高出一倍, 可能與管架區地下多為通電中之高壓電纜群,造 成保守判釋有關。而管架區之情況二僅佔3.3%, 遠低於主廠區者,研判與管架區之測線與開挖位 置分配均為直線,不易發生測線不符之情況有關。

從以上分析得知,透地雷達技術應用於探測 石化廠複雜地下物之準確率,至少應可達到六成 以上,且若能消除測線不符與人為過於保守之判 釋,相信準確率應可大幅提高。若遇局部不確定 之影像,可搭配其它輔助工具,如金屬探測器或 電纜探測儀,以取得較可靠之地下物資訊。

由於圖像判釋,深受分析者之經驗與主觀意 識影響,因此建議依探測標的之分類,累積更多 影像與實體之比對資料,建立不同標的之資料庫 系統,透過電腦分析與判讀,減少人為判讀誤 差,可讓透地雷達技術發揮其最大之應用效能。

圖三兩層介面反射狀況示意圖(李桂潀, 1996)

圖四 重疊地下物之相互影響

本案例透地雷達影像分類與實體開挖比對

致謝

感謝大誠工程顧問有限公司林進興董事長 配合現場作業並提供儀器方面之相關協助。

參考文獻

李桂潀(1996),「透地雷達在土木工程應用上之初步研究」, 碩士論文,國立成功大學土木工程研究所,台南。

林鎮華 (2003),「透地雷達數位影像編碼運算處理與圖像辨 識之研究」,碩士論文,中華大學土木工程學系,新竹。

陳福成、簡正樑(2005),「透地雷達(GPR)探測在工廠地下埋 設物調查之應用」,中鼎工程股份有限公司土建設計部 技術資料通報第181號。 Convers, L.B., Goodman, D. (1997), Ground-Penetrating Radar: An Introduction for Archaeologists, 232p.